

Center for Computation & Technology

¹Department of Mathematics and Statistics, Murray State University ²Craft & Hawkins Department of Petroleum Engineering, ³Center for Computation & Technology

INTRODUCTION

- Seismic images show rock boundaries and are generated by recording reflections of sound waves propagated through the ground.
- Identifying certain features in seismic images can be used to predict anything from oil locations to upcoming
- Goal of the TGS Salt Identification Challenge^[1]: Use deep learning to identify salt pockets in thousands of seismic images.
- The goal of this work is to test if adding wavelet decompositions of seismic images to inputs for a given U-Net will increase salt prediction accuracy.

BACKGROUND

Convolutional Neural Network (CNN)^[2]

- One of the most successful types of neural networks for image data analysis.
- Consists of convolution and pooling layers:
 - Convolution: Moves small filters over input images; the values of the filters are adjusted by the network as it trains.
 - Pooling: Resizes input images by performing an operation (e.g. maximum, average) on small groups of pixels.

Wavelet Transforms^[3]

- Wavelet functions are useful for identifying abrupt changes in data.
- There are two types of 2D wavelet transforms--discrete and continuous:
 - Discrete Wavelet Transform (DWT): Passes series of filter coefficients over an image to produce four decomposition images.
- Continuous Wavelet Transform (CWT): Passes a \bullet wavelet function kernel over the image at different scales to produce result images.

	Wavelet Wavelet Transform						
Signal	Constituent wavelets of different scales and positions						
Figure 2: Graphically of Continuous Wavelet Transform (CWT).							

1D CWT Example – from https://www.omicsonline.org/articlesimages/applied-computational-mathematics-wavelet-transform-5-305goo2.png

Improving Seismic Interpretation: **Convolutional Neural Networks with Wavelets**

Nicholas Gaubatz¹, Mayank Tyagi^{2,3}, Jyotsna Sharma²

METHODS

U-Net

- Specific CNN architecture that captures image details of various sizes.
- Consists of blocks where inputs are passed through convolution layers and resized in a pooling layer.
- Using specific Python U-Net base code found online^[4].

Wavelet Preprocessing

- This work used a few different approaches in Python, each taking in various preprocessed image sets:
- 1. Four first-level Haar DWT decompositions, each resized from 64x64 to 128x128 pixels and concatenated with original seismic images.
- 2. The first- through fourth-level Haar DWT decompositions concatenated with outputs from pooling layers.
- 3. Ricker (Mexican Hat) CWT on scales 1, 2, 4, 8, **16, and 32** concatenated with original seismic images (CWT images generated in MATLAB).

Edited image from https://arxiv.org/pdf/1505.04597.pdf

R	Ε	S	U	<mark>rs</mark>

	U-Net without Wavelet	U-Net with Wavelet				
	Original	Approach 1	Approach 2	Approach 3		
Correct Pixels	93.9%	93.9%	93.5%	93.1%		
False Positive	4.3%	4.1%	4.6%	5.0%		
False Negative	2.8%	3.0%	2.8%	3.4%		
Cross- Entropy Loss	0.1672	0.1705	0.1756	0.1897		

 Results gathered taking average over 600 validation **images**, with pixel percentages of target similarity. All results generated in Python on Google Colab.

Seismic Image

Approach 1

Approach 2

Approach 3

"Work supported by the National Science Foundation (NSF) award #OCI-1852454 with additional support from the Center for Computation & Technology at Louisiana State University"

DISCUSSION

 Approaches 2 and 3 did worse than the original U-Net without wavelet preprocessing.

 The Original and Approach 1 are not different enough to be able to make any conclusions.

 Because the U-Net has many layers, it may already train itself to capture details that the wavelets give.

CONCLUDING REMARKS

Conclusion

 The more we can improve segmentation with wavelets, the more we can understand the subsurface in the present and prepare for the future.

Future Directions

• Try different CNN architectures, wavelets, and/or seismic datasets. Try similar approaches with 1D time series data (e.g. financial data).

REFERENCES

[1]: https://www.kaggle.com/c/tgs-salt-identificationchallenge/overview [2]: Ketkar, Nikhil. Deep Learning with Python: A Hands-on Introduction: 2017 [3]: Alexandridis, Antonios K. and Achilleas D. Zapranis. Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification, 2014 [4]: https://github.com/IISourcell/Kaggle_Challenge_LIVE/

Various MATLAB tutorials: mathworks.com

ACKNOWLEDGEMENTS

I would like to thank Dr. Juana Moreno, everyone at the CCT, and all the other students in the REU for a great experience this summer.

