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Goals

Main goal: to convince you through an example that coding
can help you as a grad student to better understand things in
your classes and research, even topics you wouldn’t expect
code to illuminate.

Subgoal: to give an introduction to Riemann surfaces and
their connection to function fields in algebra.

Disclaimer: I’m not an expert. I’m showing how this project
helped me go from no understanding of the topic to some
understanding.
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Overview of Presentation

1 Function fields

2 Riemann surfaces

3 n-sheeted covering spaces and n-sheeted branched coverings

4 Connections between all of these concepts

5 Constructing Riemann surfaces

6 My code

Note: most (if not all) of the content in this talk that is not code
comes from Artin’s Algebra.
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Artin’s Algebra

Context: Last semester (spring 2023), I was taking Algebra II
with Hal Schenck, using Artin’s book, and I came across
section 15.9 on function fields.

This section didn’t make sense to me and I wasn’t going to
devote too much time to it, but . . .
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The paragraph that started it all
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Interesting...

This page promises that a computer is much more efficient than us
in computing data for these abstract objects. I decided to sit down
and try to figure out what’s going on.
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Function fields

Why do we care about Riemann surfaces in an algebra class?

They’re connected to function fields, a type of field extension.
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Function fields

Definition

Function fields are extensions of the field C(t) of rational functions
with complex coefficients.

For example, if F = C(t), F (
√
2) ∼= F [x ]/⟨x2 − 2⟩. Example

elements:

√
2 ,

i

2 + i
+ i

√
2 , 1 +

2

i

√
2 , . . .

Our goal: understand isomorphism classes of these fields.
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Riemann surfaces

Definition

The Riemann surface of a polynomial f (t, x) is the locus of zeros
of f in C2.

For example: the Riemann surface of x2 − t is below (in 3-space):
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n-sheeted covering spaces

We’ll describe Riemann surfaces here as branched coverings
involving n-sheeted covering spaces.

Definition

Let X and T be Hausdorff spaces. A continuous map π : X → T
is an n-sheeted covering space if every fiber consists of n points,
and if it has this property: let x0 be a point of X and let
π(x0) = t0. Then π maps an open neighborhood U of x0 in X
homeomorphically to an open neighborhood V of t0 in T .
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n-sheeted covering spaces

Here’s an example of an n-sheeted covering space:
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Branched coverings

Definition

A map π : X → T (where T is the complex plane) is an
n-sheeted branched covering if X contains no isolated points,
the fibers of π are finite, and there is a finite set ∆ of points of T
called branch points, such that the map (X − π−1∆) → (T −∆)
is an n-sheeted covering space.
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The connection

Theorem

Let f (t, x) be an irreducible polynomial in C[t, x ] which has
positive degree n in the variable x. The Riemann surface of f is an
n-sheeted branched covering of the complex plane T .
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The Riemann Existence Theorem

Theorem (Riemann Existence Theorem)

There is a bijective correspondence between isomorphism classes of
function fields of degree n over C(t) and isomorphism classes of
connected, n-sheeted branched coverings of T , such that the class
of the field extension K defined by an irreducible polynomial
f (t, x) corresponds to the class of its Riemann surface X .

i.e., If we know that the Riemann surfaces of two degree n
polynomials are “similar,” then their function fields are isomorphic.

How can we make sense of these Riemann surfaces?

Understanding math through code: an algebra project



Introduction
Riemann surfaces

Computing the permutations
Conclusion

Constructing Riemann surfaces

Fact: every n-sheeted branched covering X → T is isomorphic
to one constructed by a “cut-and-paste process.”

Note that if we take the Riemann surface of x2 − t and cut
(separate) along the “double locus” (the negative real t-axis),
we get two surfaces that each project bijectively to T .

We can turn this around:
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Constructing Riemann surfaces (cont.)

Stack two copies S1, S2 of the complex plane over T and cut
them open along the negative real axis.

Label the two sides of the cut on each sheet as side A and
side B.

Glue side A of sheet S1 to side B of sheet S2, and vice versa
(can’t do this in 3-space).
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The “cut-and-paste process”

In general, take each branch point pν in T (there can be
multiple), construct nonintersecting half-lines (or rays) Cν

from pν to infinity, and cut open both T and the n sheets of
X over these lines.
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The “cut-and-paste process” (cont.)

Then we label the n sheets of X as S1, . . . ,Sn and stack them
over T .

On the complex plane T , we make a loop ℓν that circles a
branch point pµ in the counterclockwise direction.

Label the side of Cν we pass through first as side A and the
other side as side B.

Label the corresponding sides of sheet Si as side Ai and side
Bi .
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Gluing

Gluing X amounts to gluing each side Ai to some side Bj .

Thus, we can describe a Riemann surface with two pieces of
information:

Branch points p1, . . . , pk

Gluing data: permutations σ1, . . . , σk (around branch point
pν , side Aν is glued to side Bσν(i)).
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Example

For our example f (t, x) = x2 − t, there is one branch point
p1 = (0, 0), and gluing data σ1 = (12).
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The algorithm
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My code

Let’s examine my program. I’ll give an overview of each of the
steps, and maybe dive deeper into some of the less complicated
functions.
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What I want you to take away

If you don’t understand everything, that’s ok!

It took me spending some hours on this project to understand
the pieces I do now.

I want you to be curious about things you encounter. Ask
yourself if coding up some examples or algorithms can help
your understanding.
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Thank you!
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